
International 

OPEN      ACCESS                                                                                                Journal 
   ISSN: 2249-6645                                              Of Modern Engineering Research (IJMER) 

 

CMR ENGINEERING COLLEGE, Kandlakoya (V), Medchal Road, Hyderabad-501401                    35 | Page 

 

       Modal Analysis of rotating machinery system 
 

M.Srinivasa Rao
1
 Dr.P.Mallesham

2
 

*( M.Srinivasa Rao ,,  Associate Professor, ,Department of mechanical engineering,Sri Indu College of Engg & 

Tech,Jntuh, India) 

Email: srinu335@gmail.com 

**(Dr.P.Mallesham, Pricipal & Professor , Pricipal,Department of mechanical engineering, Sri Indu College of Engg 

& Tech,Jntuh, India) 

Email: @gmail.com) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 

I. INTRODUCTION AND LITERATURE REVIEW 
             Condition-monitoring techniques for the diagnosis of faults in rotating machinery need to be improved in 

order to be able to identify, as quickly as possible, the many different kinds of faults that can occur in a rotor-

dynamic system. Vibration-response measurements yield a great deal of information concerning any faults in a 

rotating machine. The identification of common mass unbalance by vibration analysis is very well developed 

and can be performed in many ways; however, the identification of faults such as bowed or cracked shafts, 

rubbing, and bearing misalignment remains relatively basic. Much research must be applied to these areas so as 

to devise comprehensive fault diagnosis schemes that can automatically detect any faults that may arise in a 

system and provide information concerning the best correction procedure to be used. 

              Recently, rotating machinery has been studied in greater detail. A thorough understanding of the 

principles of rotor dynamics is essential for engineers and scientists involved in the transportation and power-

generation industries, as well as in many other fields on which we find ourselves relying to an increasing extent.  

             Because the analysis and design of rotating machinery are extremely critical in terms of the cost of both 

production and maintenance, it is not surprising that fault diagnosis of rotating machinery is a crucial aspect of 

the subject, one that is receiving ever more attention. As the design of rotating machinery becomes increasingly 

complex as a result of the rapid progress being made in technology, so must condition-monitoring strategies 

become more advanced in order to cope with the physical burdens being placed on the individual components of 

a machine. Modern condition-monitoring techniques encompass many different themes, one of the most 

important and informative being vibration analysis, a field in which much research has been carried out and a 

ABSTRACT : In this present work a direct-coupled rotor system was designed to analyze the dynamic 

behavior of rotating systems in regard to vibration parameters. The vibration parameters are amplitude, 

velocity, and acceleration in the vertical direction. To analyze the rotor-shaft system three methods are 

used. First method is a Classical method i.e. Linear Differential Method. A Non-linear mathematical 

equation is given for rotating system. A Linear Differential Method has solved this equation. The equation 

is used to calculating the critical speeds of the machines without the effects of damping. The inclusion of 

damping adds a huge degree of complexity in formulating and solving the problem. The main purpose of 

equation is to determine the actual critical speed and the corresponding amplitude, as the rotor increases 

from zero speed to its running speed. The amplitude values have been checked in mat-lab also. Second 

method is used as FEA. Third method is an Artificial Neural Network (ANN). Experimental data has taken 

from the literature can be trained to the network. The network computes any deviation in the 

displacements of rotor-shaft system. Online monitoring of the displacements can be done with the network. 

Further the deviation is checked for the acceptable range.  If the deviation is out of range then a necessary 

action is suggested. A simple back propagation network is used to carry out the process. The results 

showed that the network could be used an analyzer of such systems. The three method results are 

compared. A frequency formula for simple supported beam with centrally applied load has taken. It is 

used to calculate the natural frequency of the system. A Modal Analysis is done in FEA to determine the 

Natural frequency of the system. Comparison of theoretical and FEA results compared.  
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corresponding amount of literature produced. Using vibration analysis, the state of a machine can be constantly 

monitored, and detailed analyses may be made concerning the health of the machine and any faults that may be 

arising or may have already arisen, serious or otherwise. Common rotor-dynamic faults include self-excited 

vibration due to system instability and, more commonly, vibration due to some externally applied load, such as 

cracked or bent shafts or mass unbalance [1]. 

 

A complete rotor-bearing system can be modeled, for the purpose of dynamic analysis, by assembling 

the dynamic properties of its subsystems, such as the rotating components, the journal bearings the foundations, 

etc. These mathematical models are, in general, represented by a set of differential equations, the equations of 

motion. Because there are numerous approaches solving the equations of motion and numerous methods, which 

can be utilized for predicting the subsystem dynamic properties, the mathematical model for a rotor-bearing 

system can be constructed in many different forms. Lund [2] used the modal representation of shafts in 

modeling the rotating components of a rotor-bearing system. The rotor was supported at its static equilibrium 

state in the bearings, which were represented by a set of stiffness and damping coefficients. Thus the entire 

rotor-bearing system was treated as a non-conservative system with unsymmetrical stiffness and damping 

matrices. Earlier, Morton [3] used similar approaches for rotor modeling and bearing modeling. The dynamic 

properties of the rotor were obtained by considering the kinetic and strain energies of the rotor and its 

supporting structure when perturbed from the equilibrium state by a very small increment. The equations of 

motion were expressed in terms of the characteristic modes of the rotor as a continuous beam on rigid supports 

together with its free modes. 

 

II.THEORITICAL BACKGROUND: 
 Introduction  

                 A body said to be vibrate if it has to and fro motion. These are mainly due to elastic nature of the 

body. Whenever an elastic body such as springs, beam and a shaft are displaced from the equilibrium position 

by the application of external force, and released, they execute a vibratory motion. This is due to main reason 

that, when the body is displaced form its equilibrium position it stores the energy in the form of elastic energy or 

strain energy. At release of the body from loading these forces bring the body to its original position. When the 

body reaches to equilibrium position, the whole of the elastic energy or the strain energy is converted into 

kinetic energy due to which the body continues to move in the opposite direction the whole of the kinetic energy 

is again converted into strain energy due to which it again reaches to the equilibrium positions. In this way the 

vibratory motion is repeated indefinitely. 

          Vibration can generally be divided into two categories linear and torsional. 

 Linear vibration is the type most of people are familiar with, this is the shaking and movement of equipment 

can easily feel and hear. As a rule, linear vibrations are related to some type of mechanical problem such as 

imbalance or misalignment, or, advanced wear of gears or bearings. Linear vibrations tend to get worse as 

speeds increases, the vibration increases in both frequency and amplitude in other words the faster the tire turns 

the worse the imbalance becomes. 

         Vibration of turbomachinery can very seriously affect the functionality and profitability of industrial 

plants. The reduced output or unplanned shutdowns of machines are a common result of high levels of 

vibrations. In very simple terms, the turbomachinery consists of a rotor (with impellers/bladed disks, etc) 

supported on bearings and rotating in the bearing clearance space. Basically there are three forms of vibrations 

associated with the motion of the rotor: torsional, axial and lateral. Torsional vibration is the dynamics of the 

shaft in the angular/rotational direction. Normally, this is little influenced by the bearings that support the rotor. 

Axial vibration is the dynamics of the rotor in the axial direction and is generally not a major problem. Lateral 

vibration, the primary concern, is the vibration of the rotor in the lateral directions. The bearings play a huge 

part in determining the lateral vibrations of the rotor. In this short course, we will study the basic concepts of the 

lateral rotor dynamics of turbomachinery [30, 31]. 

           The turbomachinery consists of a rotor (with impellers/bladed disks, etc) supported on bearings and 

rotating in the bearing clearance space. To understand the basic principles of the dynamic behavior of the rotor, 

let us look at a simple rotor-bearing system and then extend these principles to the more complicated real-world 

turbomachinery. 

 

     • Natural frequency: the frequency of vibration of a system (e.g.. rotor-bearing system) under free conditions 

(i.e.., without external forces). This is a function of the system. Each system has its own natural frequencies. 

Consider a very simple system – a mass supported by a spring, the natural frequency of this system is 

given by:  

                           ωn  = √ (k / m)                 

Factors affecting natural frequencies: 
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             The major factors affecting the natural frequencies of an object are the objects inertia and 

rigidity,Resonance,Critical speed.   

Rotor supporting system: 

Figure shows a classical Jeffcott rotor – a rotor with a concentrated mass at the center 

and supported by bearings at each end 

 
                Let us assume that the mass is concentrated at the midspan. The bearings are assumed to be rigid 

supports. Thus the rotor can be assumed to be simply supported. Using the theory of beams, the stiffness of the 

simply supported beam can be written as, 

 

                                     k = [48EI] / L
3 
 

                                         = [48E(πd
4
)] / (64 L

3
) 

Using the above equation for natural frequency, we obtain, 

                        ωn  = √ (k / m) 

                                            = √ {[48E(πd
4
)] / (64L

3
m)} 

        If we assume distributed mass of the shaft of diameter “d” and length “L”, the above equation can be 

reduced to, 

                                               ωn  = √ (k / m) 

                                            = √ {[48E(πd
4
)] / (64 L

3
)x4 / (ρ πd

2
 L)} 

                                             = f (d / L
2
)      

 

 
THEORY OF THE ROTATING SYSTEM 
             Let us consider the rotor shown in Figure 1 which by assumption rotates with a constant angular speed 

Ω. 

 
FIGURE 1 Description of the system.  

 

The shaft S of the rotor is supported rigidly at its ends. Assume that the shaft can be considered massless and 

flexible, whereas the element E can be approximated by a particle of mass m. This particle is attached to the 

shaft at the center of gravity G of the element E. The center of gravity G is displaced by μfrom the geometrical 

center of the shaft cross-section C. The distanceμ represents the imbalance of the element E and can be 

considered to be of small magnitude. To analyze motion of this system, let us introduce the inertial system of 

coordinates X, Y, and Z as it is shown in Figure 2. The instantaneous position of the center C is determined by 

the position vector rC . The center of gravity G rotates with respect to this center with the angular velocity Ω. 

Since the angular velocity is constant, the relative instantaneous position of the center of gravity G is determined 

by the angle Ωt and the imbalance μ (vector rGC). The absolute position of the center of gravity G in Figure 2 is 

denoted by rG. The vector Fs represents the static resultant force acting on the element E. R stands for the 

interaction force between the element considered and the shaft.  
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FIGURE 2 Representation of the absolute position of the center of gravity G. 

 

 
MATHEMATICAL MODEL OF THE SYSTEM 

      The motion of the center of gravity G is governed by the Newton law 

FRrm sG 
..

                                                     (1)  

Where, according to Figure 2, 

       rG = I(X+μcos (Ωt) +J(Y+ μsin (Ωt) 

 

       R = -IkX-JkY                                               (2) 

 

       FS = IFX+ JFY 

 

In the above formula, k stands for the stiffness of the shaft at the point C, and X and Y are its coordinates. The 

introduction of Equation (2) into Equation (1) results in the following set of differential equations: 

FkYtYm Y )sin( 2
..

                               (3)   

or, after reorganization, 

tmFkXXm X  cos2
..

                              (4) 

tmFkYYm Y  sin2
..

  

The particular solution of the nonhomogeneous Equation (5), 

FkXXm X
..

                                         (5)     

FkYYm Y
..

 

Yields the equilibrium position (Xs;Ys): Upon assuming the particular position in the form 

XX s                                                 (6) 

YY s  

One may obtain the following formulas for the coordinates of the equilibrium position, which are usually 

referred to as the static deflection of the shaft. 

k

F
X

X
s                                               (7) 

k

F
Y

Y
s   

The total deflection of the shaft X, Y is the sum of the static deflection Xs,Ys, and the dynamic deflection x, y 

(Figure 3): 

xXX S                                                 (8) 

yYY S   

 

The introduction of Equation (8) into mathematical model in Equation (4) that govern the dynamic deflections x, 

y 

tmkyym  sin2
..

                            (9) 
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                     FIGURE 3   Total deflection of shaft on the planar surface. 

tqxx  cos2
..

                                        (10) 

tqyy  sin2
..

                                        (11) 

m

k
   ,           2q                       (12) 

Upon multiplying Equation (11) by the imaginary unit i and adding Equations (10) and (11), one may obtain the 

equations of motion of the rotor in the following form:  

eqzz ti2
..

                                          (13) 

iyxz                                                   (14)       

 

The above equation governs motion of the rotor in the stationary system of coordinates x, y, and z. Let us 

introduce the rotating system of coordinates xR, yR, and zRas shown in Figure 4. Axis ZRcoincides axis z, and 

axes xRand yR, rotate with the constant angular velocity Ω. In terms of the complex notations, the position of the 

point C in the stationary system of coordinates x, y, and z is   

ezz i                                                      (15) 

 

and in the rotating system of coordinates, it is 

 

eezezz
t

R
t

RR
   i)-i(

                            (16) 

 

     The introduction of Equation (15) into Equation (16) yields the relationship between coordinates of the same 

point in the stationary (x, iy) and the rotating (xR, yR,) systems of coordinates: 

ezz
t

R
 -i

                                                  (17) 

 

 
          FIGURE 4 the rotating system coordinates. 

 

 

The inverse transformation is  

ezz t
R

 i
                                           (18) 

 

Differentiating Equation (18) with respect to time, one can obtain 

eizezz ti
R

t
R

  i
..

                                  (19) 
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ezeizezz ti
R

tit
R R


 2

.
i

....

2  

 

The introduction of Equation (19) into mathematical model produces the equation of motion of the rotor in 

terms of the rotating system of coordinates: 

qzizz RR R  )(2 22
...

                        (20) 

 

 Put z = zR = fe
 (-ivt)

 

It is taken from reference [33] to solve the above equation 

Differentiate „z‟ with respective time 

 

dz / dt = [df / dt] e
 (-ivt)

 + (-iv)fe
 (-ivt)                      (A) 

 

   Once again differentiate „dz / dt‟ with respective time  

 

d
2
z / dt

2
 = [d

2
f / dt

2
] e

 (-ivt)
 + [df / dt] (-iv) e

 (-ivt) 
+ (-iv){[df / dt]e

 (-ivt)
 + (-iv)fe

 (-ivt)
} 

 

 

              = [d
2
f / dt

2 
]e

 (-ivt)
 – 2iv [df / dt] e

 (-ivt)
 –v

2
fe

 (-ivt)                                                      (B) 

 

Substituting (A) and (B) in (20)
 

 

[d
2
f / dt

2
 ]e

 (-ivt)
 – 2iv e

 (-ivt)
 [df / dt] – v

2
fe

 (-ivt) 
+ 2iv {[df / dt] e

 (-ivt)
 -ive

 (-ivt) 
f}  

 

                                    + e
 (-ivt )

f (ω
2
 – v

2
) = q  

 

 [d
2
f / dt

2
]e

 (-ivt) 
+ e

 (-ivt)
 fω

2  
= q   

 

  [d
2
f / dt

2]
 + fω

2  
= q e

 (ivt)
 

 

Above equation can be written in auxiliary equation form 

 

D
2
 + ω

2 
= 0 

 

We can written as 

        D = ± iω 

Complete Solution = Complementary Function + Particular  

                                                                                Integral    

 

Complementary function (C.F) = C1 cos (ωt) + C2 sin (ωt) 

 

Particular Integral (P.I) = [q e
 (ivt)

] / (ω
2
 – v

2
) 

 

f = C1 cos (ωt) + C2 sin (ωt) + [q e
 (ivt)

] / (ω
2
 – v

2
)             

                                               --------------------------------(C) 

 By applying boundary conditions in (C)  

 

              f (0)=0 , Df (0.5) = 0  

 

It can be written the equation as 

 

f = q / (ω
2
 – v

2
){– cos (ωt) – [0.01917  + (iv)e

 (0.5iv) 
] sin (ωt) +e

 (ivt)
 

 

   z = [qe
 (-ivt)

] / (ω
2
 – v

2
) {– cos (ωt) – [0.01917 + (iv)e

 (0.5iv)
] sin (ωt) +e

 (ivt)
} 

 

The above equation is solved from the Linear Differential Method [34]. It is used to calculate the deflection of 

the rotor-shaft system. 
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SOLUTION TECHNIQUES ADAPTED 

 

3.1. `LINEAR DIFFERENTIAL EQUATION METHOD: 

              Linear differential equations are those in which the dependent variable and its derivation occur only in 

the first degree and are not multiplied together. Thus the general linear differential equation of the n
th 

 order of 

the form [34], 

 

   d
n
y /dx

 n 
 + p1 d

n-1
 y /dx

n-1 
+ p2 d

n-2
 y /dx

n-2 
 + ……………. + pn y=X , 

 

Where p1, p2,……….., pn and X are functions of x only. 

Linear differential equations with constant co-efficients are of the form  

 

              d
n
y /dx

 n 
 + k1 d

n-1
 y /dx

n-1 
+ k2 d

n-2
 y /dx

n-2 
 +.  ……………+ kn y=X ,         

 

 Where   k1, k2,……………., kn are constants. Such equations are most important in the study electro-mechanical 

vibrations and other engineering problems. 

 

      Working procedure to solve equation: 

 

              d
n
y /dx

 n 
 + k1 d

n-1
 y /dx

n-1 
+ k2 d

n-2
 y /dx

n-2 
 +.  ……………+ kn y = X          

    of which the symbolic form is  

                   (Dn + k1 D
n-1

+………………………+ kn-1 D+ kn  )y = X  

Step 1:               

To find the complementary function 

 (i)Write the auxiliary equation (A.E) 

                   i.e.  D
n
 + k1 D

n-1
+………………………+  kn-1 D+ kn  =0, and solve it for D 

(ii) Write the complementary function (C.F) as follows  

 

    Step 2:To find the particular integral 

            From symbolic form 

                  P.I.= (1 / D
n
 + k1 D

n-1
+…+ kn-1 D+ kn) X = [1/ f(D)] X or [ 1/ Ø(D

2
)]X. 

(i)When X = e
ax      

                      P.I = [1/ f (D)] e
ax,

  , put D = a
 

= [1/ f (a)] e
ax     

,  provided  f(a) ≠ 0. 

                                 If   f(a) = 0 , the above rule fails and we proceed further. 

                      P.I = [1/ f(D)] e
ax         

,  put D = a
 

=  x [1/ f'(a)] e
ax   

, provided  f'(a) ≠ 0
.
 

                                If   f'(a)  = 0 , the above rule fails and we proceed further. 

                      P.I = [1/ f(D)] e
ax

, put D = a
 

=   x
2
 [1/  f''(a)] e

ax   
, provided f''(a) ≠ 0. 

            and so on     

 

(ii) When X = sin(ax+b) or cos(ax+b). 

   P.I = [1 / f(D
2
)]sin(ax+b) [ or cos(ax+b)], put D

2 
= -a

2
   ,providedf(-a

2 
)≠0 , 

                =[1 / f(-a
2
)]sin(ax+b) [ or cos(ax+b)], 
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           If    f(-a
2 
) = 0 , the above rule fails and we proceed further 

           P.I = [1 / f'(D
2
)] sin (ax+b) [or cos (ax+b)], put D

2 
= -a

2
  , provided f'(-a

2 
)≠0  

                  = x [1 / f'(-a
2 
)] sin (ax+b) [or cos (ax+b)], 

        and so on 

 (iii)When X =x 
m
     , m being a positive integer 

P.I = [1/ f (D)] x 
m
= [f(D)] 

-1
x 

m
 , 

             Expand [f (D)] 
-1

in ascending powers of D as far the term in D 
m
 and operate on x 

m
 term be term. Since 

the (m+1)
 Th

 and higher derivatives of x 
m
are zero, we need not consider terms beyond Dm. 

  (iv)When X= e
ax

 V, where V is a function of x. 

P.I = [1/ f(D)] e
ax 

V 

                      =   e
ax 

[1/ f(D+a)]V 

            and the evaluate  [1/ f(D+a)]V as in (i),(ii),(iii). 

(v)When X is any function of x    

   P.I =[1/ f(D)]X 

         Resolve [1/ f(D)] into partial fractions and operate each partial fraction on X remembering that  

         [1/ (D-a)]X = e
ax

  ∫ X e 
-ax  

dx 

  This method is a general one and can, therefore, be employed to obtain a particular integral any given case. 

 Step 3: 

To find the complete solution (C.S) 

                          Then the C.S, is y = C.F. + P.I. 

 

3.2.Introduction to Finite Element Analysis  

             The finite element method [35] has become a powerful tool for the numerical solution of a wide range 

of engineering problems. Applications range from deformation and stress analysis of automotive, aircraft, 

building, and bridge structures to field analysis of heat flux, fluid flow, magnetic flux, seepage and other flow 

problems can be modeled with relative ease. 

            In this method of analysis, a complex region defining a continuum is discretized into simple geometric 

shapes called finite elements. The material properties and the governing relationships are considered over these 

elements and expressed in terms of unknown values at element corners. An assembly process, duly considering 

the loading and constraints, results in a set of equations. Solution of these equations gives us the approximate 

behavior of the continuum. 

            The finite element method is method of piecewise approximation in which the actual body of matter is 

considered as an integrated part of small elements known as finite elements. These elements are connected with 

one another at he joints called nodes or nodal points. Since the actual variation of the field variable like 

displacement, stress, temperature, pressure or velocity inside the continuum is not known the variation of the 

field variable inside the finite element can be approximated by a simple function called interpolation model 

which is defined in terms of field variables at nodes. Field equations can be written in the form of matrix 

equations and are solved for the nodal values of the field variables. The approximating functions define the 

variable through out the assemblage of finite elements. 

             The solution [36] of a general continuum problem by the finite element method always follows an 

orderly step-by-step process. With reference to static structural problems the step-by-step procedure can be 

stated as follows. 

         Discretization of the structure 

                      The first step in the finite element method is to divide the structure or solution region into 

elements. Hence the structure is to be modeled with suitable finite elements. The number, size and arrangement 

of the elements are the input parameters. 

     Selection of proper interpolation or displacement model  

                     Since the displacement solution of a complex structure under any specified load conditions cannot 

be predicted exactly, some suitable solution with in an element is assumed to approximate the unknown 

solution. The assumed solution must be simple from computational point of view, but should satisfy certain 

convergence requirements. In general the solution or the interpolation model is taken in the form of a 

polynomial. 

     Derivation of element stiffness matrix and load vectors  

                   The stiffness matrix [ k
(e)

 ] and the load vector { f
 (e) 

} of element „e‟ are derived from the assumed 

displacement model by using either equilibrium conditions or a suitable variation principle. 

    Assemblage of element equations to detain the overall equilibrium equation  

                   The individual element stiffness matrices and load vectors are assembled in a suitable manner, as the 

structure is an assemblage of these elements. The overall equilibrium equations are formulated as 

                                           [k] {u} = {f} 
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               Where, 

                                    [k] is called the assembled stiffness matrix, 

                                    {u} is the vector of nodal displacements and  

                                     {f} is the vector of nodal forces for the complete structure. 

Solution for the unknown nodal displacements  

 

            Structural analysis can be broadly divided as Static Analysis, Modal Analysis, Harmonic Analysis, 

Transient Dynamic Analysis, and Buckling Analysis. 

 

(i) Static Analysis 

                   Static analysis calculates the effects of steady loading conditions on a structure while ignoring 

inertia and damping effects, such as those caused by time-varying loads. Static analysis is used to determine the 

displacements, stresses, strains and forces in structures or components caused by loads that do not induce 

significant inertia and damping effects. Steady loading and response conditions are assumed; that is, the loads 

and structures response are assumed to vary slowly with respect to time. 

  The kinds of loading that can be applied in a static analysis include; 

 Externally applied forces and pressures 

Steady-state inertial forces (such as gravity or rotational velocity) 

Imposed (non-zero) displacements 

Temperatures (for thermal strain) 

Fluencies (for nuclear swelling) 

 The static analysis solution method is valid for all degrees of freedom (DOF„s). 

  Inertial and damping effects are ignored, except for static acceleration fields. 

 

  (ii) Modal analysis: 

                   Modal analysis is used to determine the vibration characteristics (natural frequencies and mode 

shapes) of a structure or a machine component while it is being designed. It also can be a starting point for 

another, more detailed, dynamic analysis, such as a transient dynamic analysis, a harmonic response analysis, or 

a spectrum analysis. 

              Modal analysis is to determine the natural frequencies and mode shapes of a structure. The natural 

frequencies and mode shapes are important parameters in the design of a structure for dynamic loading 

conditions. 

. 

    Performing a typical FEA analysis   

        The FEA program has many finite element analysis capabilities ranging from a simple, linear, static 

analysis to a complex, non-linear, transient dynamic analysis. A typical FEA analysis has three distinct steps 

Build the model  

Apply loads and obtain the solution  

 Review the results 

Building a model  

Modal Analysis of shaft-rotor system: 

Modal analysis is to determine the vibration characteristics (natural frequencies and mode shapes) of a structure 

or a machine component while it is being designed. It also can be a starting point for another, more detailed, 

dynamic analysis, such as a transient dynamic analysis, a harmonic response analysis, or a spectrum analysis 

Boundary Conditions 

 

III. ARTIFICIAL NEURAL NETWORKS: 
            McCulloch and Pitts (1943) [37] developed the first artificial neuron. However, it was not until the 

psychologists David Rumelhart, of University of California at San Diego, and James McClelland, of Carnegie-

Mellon University, developed the back propagation algorithm for training multi-layer perceptrons, that interest 

in ANNs, flourished (Rumelhart et al., 1986 a, b [39]; McClelland and Rumelhart, 1988[40]). 

           Recently, ANNs have been applied extensively to many prediction tasks. ANNs are able to determine the 

relationship between a set of input data and the corresponding 

output data without the need for predefined mathematical equations between these 

data. Neural networks have been applied in many applications such as: automotive, aerospace, banking, medical, 

robotics, electronic, and transportation. 

Artificial neural networks perform well as hetero-associative classifiers and 

predictors, and are especially applicable when the data considered does not follow a 

known distribution or pattern. Past research in quality and process control have produced 
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neural networks which rival other, usually statistical, techniques in accuracy. 

Moreover, the network approaches have superiority in robustness and convenience. Robustness comes about 

from a neural network's ability to handle noisy, corrupted or incomplete data. Convenience for process/quality 

control is gained from not having to pre-specify a technique or probability distribution, and being able to 

continuously adjust parameters. With the advent of hardwired neural networks, cost effective, real time 

predictive quality control will be available. 

              The structure and operation of natural neural networks (NNNs) have been described by many authors 

(Hertz et al., 1991; Zurada, 1992; Fausett, [43], 1994; Neuralware Inc., 1997). NNNs, of which the brain is an 

example, consist of billions of densely interconnected nerve cells called neurons. Each neuron receives the 

combined output signals of many other neurons through the synaptic gaps by input paths called dendrites. The 

dendrites collect the output signals and send them to the cell body, or the soma of the neuron, which sums the 

incoming signals. If the charge of the collected signals is strong enough, the neuron is activated and produces an 

output signal; otherwise the neuron remains inactive. The output signal is then transmitted to the neighbouring 

neurons through an output structure called the axon. 

 

The axon of a neuron divides and connects to dendrites of the neighbouring neurons through junctions called 

synapses. Artificial neural networks (ANNs) are a form of artificial intelligence (AI), which in their architecture 

attempt to simulate the biological structure of the human brain and nervous system. Artificial neural networks 

(ANNs) are a form of artificial intelligence, which, in their architecture, try to simulate the biological structure 

of the human brain. ANNs try to mimic the behaviour of the basic biological and chemical processes of NNNs. 

ANNs learn “by example” and therefore are well suited to complex processes where the relationship between 

the variables is unknown. ANNs consist of a number of artificial neurons (variously known as “processing 

elements”, “PEs”, “Nodes” or “Units”) representative of the neurons in ANNs. Each processing element has 

several input paths and one output path, as shown in Figure 2  An individual PE receives its inputs from many 

other processing elements via weighted input connections. These weighted inputs are summed and passed 

through a transfer function to produce a single activation level for the processing element, 

which is the node output. 

 
Figure 2. Typical processing element (PE) in a neuron. 

       A typical structure of artificial neural networks consists of many processing elements that are arranged in 

layers: an input layer, an output layer, and one or more layers inbetween, called intermediate or hidden layers 

(Figure 3). Each processing element in a specific layer is interconnected to all the processing elements in the 

next layer via weighted connections. The scalar weights determine the strength of the connection between 

interconnected neurons. A zero weight refers to no connection between two neurons and a negative weight 

refers to a prohibitive relationship. 

              The propagation of information starts at the input layer where the input data are 

presented. The inputs are weighted and received by each node in the next layer. The weighted inputs are then 

summed and passed through a non-linear transfer function to produce the node output, which is weighted and 

passed to the processing elements in the next layer. The network‟s output is compared with the actual value and 

the error between the two values is calculated. This error is then used to adjust the weights until the network can 

find a set of weights that will produce the input-output mapping with the smallest possible error. 

 
Figure 3. Typical structure of ANN 
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               Back-propagation neural networks are adopted in this work, as they have a high capability of data 

mapping . Back-propagation neural networks have been applied to a wide range of areas including classification, 

estimation, prediction, and functions synthesis and they are currently the most widely used neural network. The 

topology and algorithm details of back-propagation neural networks are beyond the scope of this report and can 

be found in many publications.    Back propagation neural networks are one of the most common neural network 

structures, as they are simple and effective, and have found home in a wide assortment of machine learning 

applications. 

Supervised learning compares the obtained output with the expected target value and adapts the 

network to obtain a stable weight structure. In present work, a back propagation neural network is used for 

amplitudes estimation. 

The data for training the networks are obtained from the literature reference [1]. . The obtained data are 

normalized; i.e. each entity of a particular input vector is divided by the length of the vector to scale it down to 0 

to1 to prevent the abnormal growth of weight structures during successive iterations. These data are fed to the 

network. Weights are updated using the generalized Delta rule. 

Wnew = Wold –αET I. 

Where 

Wnew= weight after modification. 

Wold  = weight structure before modification. 

α = learning rate, usually taken between 0 and 1. 

ET = error obtained. 

Weight change is calculated for all connections. Errors for all patterns are summed and the algorithm is 

run until the error falls below a specified value. 

To reach the global minimum of the error of the network, the aid of heuristic optimization techniques is 

sought in present work. The present work uses the concept of momentum to overcome local minima .The 

technique lies in adding a portion of previous weight changes in weight modification: 

W2(k+1) = W2(k) + αETO1+ρΔW2(k) 

Where 

ρ=momentum rate, usually taken to be around 0.5 - 0.8. 

k = number of the present iterations. 

The obtained stable weight structures are used with new input patterns to obtain the amplitude values. 

 

IV.RESULTS AND DISCUSSION: 
Classical Method (LDM) Results: 

z = [qe
 (-ivt)

] / (ω
2
 – v

2
) {– cos (ωt) – [0.01917 + (iv)e

 (0.5iv)
] sin (ωt) +e

 (ivt)
} 

where z = x + iy 

by varying the speed of the shaft from 50 rpm to 1800 rpm deflection of the shaft can be calculated from the 

above equation. Dimensions of the rotor-shaft system: 

                  Diameter of shaft                              : 0.0145 m 

                  Length of the shaft                            : 1 m 

                   Rotor disc weight                             : 1.64 kg 

                  Young‟s modulus of steel                 : 1.9x10
11 

N / m
2
 

 

S.No. 
Speed 
(rpm) 

Deflection 
   (mm) 

1 50 0.04402489 

2 100 0.214086205 

3 150 0.000426717 

4 200 0.004804517 

5 250 0.005774132 

6 300 0.154791801 

7 350 0.095430033 

8 400 0.09432363 

9 450 0.124408639 

10 500 0.211394707 

11 550 0.005741812 
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12 600 0.168263215 

13 650 0.27036401 

14 700 0.286582197 

15 750 0.092722227 

16      800 0.306905844 

17 850 0.201956467 

18 900 0.148668497 

19      950 0.197481519 

20 1000 1.786671022 

21 1050 1.962335019 

22 1100 1.511730089 

23 1150 0.702974932 

24 1200 0.212774319 

25 1250 0.321679591 

26 1300 0.126031088 

27 1350 0.022767366 

28 1400 0.168263215 

29 1450 0.27036401 

30 1500 0.286582197 

31 1550 0.092722227 

32 1600 0.306905844 

33 1650 0.201956467 

34 1700 0.148668497 

35 1750 0.197481519 

36 1800 0.154791801 

 

 

Static Analysis Results: In FEA by giving input dimensions of rotating shaft system, varying the speed of the 

shaft from 50 rpm to 1800 rpm deflection of the shaft can be obtained and compared. 

Dimensions of the rotor-shaft system: 

                  Diameter of shaft                              : 0.0145 m 

                  Length of the shaft                            : 1 m 

                   Rotor disc weight                             : 1.64 kg 

                  Young‟s modulus of steel                 : 1.9x10
11 

N / m
2
 

 

S.No. 

Steady inertia 
load 
(Angular velocity 
)                   
(rad/sec) 

FEA 
deflection 
values 
 (mm) 

1 5.236 0.03667 

2 10.472 0.24003 

3 15.707 0.00039 

4 20.944 0.00592 

5 26.18 0.00519 

6 31.416 0.17677 

7 36.652 0.10898 

8 41.888 0.11602 

9 47.124 0.10898 

10 52.359 0.23934 
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11 57.596 0.00508 

12 62.832 0.15442 

13 68.067 0.23657 

14 73.303 0.3531 

15 78.539 0.08148 

16 83.775 0.34718 

17 89.011 0.19085 

    18 94.247 0.16829 

19 99.483 0.1709 

20 104.719 1.65898 

21 109.955 1.99087 

22 115.191 1.54366 

23 120.427 0.65266 

24 125.663 0.2579 

25 130.899 0.30051 

26 136.135 0.15276 

27 141.371 0.02102 

28 146.607 0.15085 

29 151.843 0.23757 

30 157.079 0.35 

31 162.315 0.08968 

32 167.551 0.35767 

33 172.787 0.19553 

34 178.023 0.17513 

35 183.259 0.19096 

36 188.495 0.14136 

 

 
 

Above one is FEA output with speed 1050 rpm,deflection value is 1.991 mm is obtained   

 

Artificial Neural Network Results: In ANN  a back propagation algorithm is used to analyze deflection by 

giving input values as speed to the network ,deflection values are obtained. 

  S.No. Speed(rpm) 

ANN 
deflection  
values 

1 50 0.050364474 

2 100 0.154955595 

3 150 0.000488164 

4 200 0.00437211 

5 250 0.006680671 

     6 300 0.131108655 

7 350 0.091803692 

8 400 0.078307478 

9 450 0.135854234 

10       500 0.186598108 
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11 550 0.006568633 

12 600 0.133096203 

13 650 0.305781695 

14 700 0.247629945 

15 750 0.113668178 

16 800 0.241086817 

17 850 0.16802778 

18 900 0.117596781 

19 950 0.251591455 

20 1000 1.600857236 

21 1050 1.913276643 

22      1100 1.576734483 

23 1150 0.808315726 

24 1200 0.177241008 

25      1250 0.363819618 

26 1300 0.111159419 

    27 1350 0.024861963 

28 1400 0.104827983 

29 1450 0.309296427 

30 1500 0.265243287 

31 1550 0.100047283 

32 1600 0.268542613 

33 1650 0.231038198 

34 1700 0.121759499 

35      1750 0.223351598 

     36 1800 0.173366817 

 

 

 
 

Comparison graph is drawn between speed versus amplitude for LDM & FEA values it is observed that at speed 

1050 rpm, maximum deflection value is observed. 

 

 
Comparison graph is drawn between speed versus amplitude for LDM & Artificial Neural Networks (ANN) 

values it is observed that at speed 1050 rpm, maximum deflection value is observed. 
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Above graph is comparison graph between three methods LDM, FEA, ANN 

    The dimensions of the rotor-shaft system are taken from the Reference [1]. 

Dimensions of the rotor-shaft system: 

                  Diameter of shaft                              : 0.0145 m 

                  Length of the shaft                            : 1 m 

                   Rotor disc weight                             : 1.64 kg 

                  Young‟s modulus of steel                 : 1.9x10
11 

N / m
2
 

Calculating stiffness of the shaft: 

                                     k = [48EI] / L
3 
 

                                         = [48E (πd
4
)] / (64 L

3
)

 

                                         = [48x1.9x10
11

x π x (0.0145)
4
] / (64 x (1

3
)) 

                                         = 19789.58769   N / m                                     

Using the above equation, the theoretical natural frequency can be calculated as 

                        ωn = √ (k / m) 

                                            = √ (19789.58769 / 1.64) 

                                    ωn    = 109.8490863 rad / sec 

 f   = ωn / 2 π    Hz 

                                          = 109.8490863 / 2 π     

f= 17.48302508   Hz 

 

Modal Analysis Results: 

 

In FEA modal analysis of rotating machinery system is done, natural frequency values is obtained and compared 

with theoretical values. 

 
 

 
                         Above one is FEA output first natural frequency is 17.391 Hz is obtained   
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V. CONCLUSIONS AND FUTURE SCOPE OF WORK 
        This projects mainly deals with the analysis of rotor-shaft system as explained previous. That is Classical 

Method, Static analysis, ANN and Modal analysis. The results obtained are concluded as below 

 The calculated amplitude from Classical method of the rotor-shaft system is high at the critical speed and 

low at other running speed. 

 The results obtained in Static analysis matches to the results obtained of the Classical method (LDM) 

 The frequency results obtained from Modal analysis are nearer to the theoretical results. 

 The results obtained from ANN are nearer to the Classical method. Hence the network systems could be 

used as an analyzer for rotating-machinery systems. 

 

VI. FUTURE SCOPE OF WORK: 

The mathematical model of the rotor-shaft system can be extended to 

 The simple supported beam with damping for single mass on midspan 

 The simple supported beam with/without damping for different masses on   midspan. 
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